

Welcome to MySocket’s documentation!

Welcome to the documentation for Mysocket.io, a service that provides you with
fast and secure network connectivity whenever you need it, wherever you are.

Mysocket provides load balancing and secures application traffic at the edge.

Note

This documentation is an open source project.
We always appreciate your feedback and improvements.

You can submit an issue or pull request on the GitHub repository [https://github.com/mysocketio/docs/],

The main documentation is organized into the following sections:

About Mysocket

	Introduction

	Quick start

	Features

	Build on a global anycast network

	Example use cases

	Interacting with the Mysocket.io service

	FAQ

mysocketctl

	Introduction
	About this Documentation

	Installing Mysocketctl
	Making sure you run the latest version

	Account management and login
	Creating an account

	Logging in and get a token

	Account information

	Quick connect options

	Socket Management
	Creating sockets

	Listing all sockets

	Delete sockets

	Tunnel Management
	Creating a tunnel

	Listing all tunnels for a socket

	Deleting a tunnel

	Connecting and using a tunnel

Index

	Index

Introduction

Welcome to the documentation for Mysocket.io, a service that provides you with
fast and secure network connectivity whenever you need it, wherever you are.

About Mysocket

Mysocket.io is a service that provides public endpoints for services that are otherwise not publicly reachable. A typical example is a web service running on your laptop, which you’d like to make available to your client. Or ssh access to servers behind NAT or a firewall, like a raspberry pi on your home network. Mysocket.io is a fully managed cloud service, so nothing to run!
Mysocket also provides OpenIDConnect and Saml authentication options, allowing for zero trust deployments.

About this Documentation

The goal is for the documentation to be continuously updated and improved.

Note

You can contribute to the documentation by opening an issue
or sending patches via pull requests on the GitHub
source repository [https://github.com/mysocketio/docs/].

Quick start

More documentation can be found below; but if you’re eager to get started, consider this a quick start.
Download the mysocketctl client from our download page [http://download.edge.mysocket.io/]

Accounts can be created online, using the portal here: https://portal.mysocket.io/register, or using the cli
Create an account:

mysocketctl account create \
 --name "your_name" \
 --email "your_email_address" \
 --password "a_secure_password"

After confirming your new account (check your email), login and retrieve an access token:

mysocketctl login \
 --email "your_email_address" \
 --password "a_secure_password"

or just mysocketctl login:

$ mysocketctl login
Email: atoonk@example.com
Password:
Login successful

Now you’re ready to use the “quick connect” feature to connect your local service listening on port 8000 to the Internet:

mysocketctl connect \
 --port 8000 \
 --name "my test service"

┌──────────────────────────────────────┬───────────────────────────────────┬─────────┬──────┬────────────┬─────────────────┐
│ SOCKET ID │ DNS NAME │ PORT(S) │ TYPE │ CLOUD AUTH │ NAME │
├──────────────────────────────────────┼───────────────────────────────────┼─────────┼──────┼────────────┼─────────────────┤
│ 6be8287f-cf55-4e29-a7c8-4960166ac609 │ green-voice-5562.edge.mysocket.io │ 80, 443 │ http │ false │ my test service │
└──────────────────────────────────────┴───────────────────────────────────┴─────────┴──────┴────────────┴─────────────────┘

Connecting to Server: ssh.mysocket.io

Welcome to Mysocket.io!
my test service - https://green-voice-5562.edge.mysocket.io

===
Logs
===
<live stream of your logs here>

To quickly test if it’s working, you can start a web service on localhost port 8000 like this.

python3 -m http.server 8000

Now visit the URL (dns_name) using your browser, and you’ll see that the localhost service you just started is now globally available!

Features

Stable public DNS names and port numbers for your private apps.

	Supports various socket types, including:
	
	HTTP

	HTTPS

	TCP

	TLS

Zero trust: Support for OpenIDConnect authentication. protect your sockets with authentication. Login with your favorite idendity provider (Google, Facebook, Github)

Options for SSL/TLS Encryption for your sockets

All sockets run on a global anycast network, reducing latency and improving the user experience.

Username and Password protected (HTTP/HTTPS) Sockets

Live Stream of logs. We show you all requests in real-time, including the latency between our anycasted nodes and your origin server.

Support for multiple origins per socket, ie. Load Balancing

Build on a global anycast network

Mysocket.io is built on a global anycasted network of 94 Points of Presence in 82 cities across 44 countries. This helps you improve the availability and performance of the applications that you offer to your global users.
Mysocket.io application services connect to use anycast network using various servers in North America, Europe, and Asia. All this provides us with the best possible low latency user experience and Instant regional failover, which results in an incredible level of high availability.

Example use cases

Zero Trust

With our Identity Aware sockets [https://www.mysocket.io/post/introducing-identity-aware-sockets-enabling-zero-trust-access-for-your-private-services] you can provide access to your private (on prem) services, without the need for a VPN.
Mysocket can act as a VPN alternative. No software is needed on the client, all the while authentication and authorization options are making sure your private resources are only available to those who should have access.

Kubernetes public load balancer

Provide a load balancer service with a public anycasted IP for your Kubernetes workloads.
As easy as installing the mysocket.io k8 controller. [https://www.mysocket.io/post/global-load-balancing-with-kubernetes-and-mysocket]

Easy Multi-region load balancing

Spin up your origin services over multiple cloud providers and regions and have the mysocket edge network front and secure your traffic.
Load balancing over multiple regions and cloud providers has never been easier. [https://www.mysocket.io/post/easy-multi-region-load-balancing-with-mysocket-as-a-load-balancer]

Make the local web service on your laptop available to your colleagues or client.

You may prefer to do web development on your laptop, and, before publishing it to some public server, would like to share it quickly with your teammate or client. Using Mysocket.io you can make the web app running on localhost, publicly available to anyone on the Internet. Just share the mysocket.io generated URL with those with who you’d like to share it. If you’d like, you can even make it password protected.

Access your raspberry pi at home from anywhere on the Internet

You have a small lab at home, perhaps with a raspberry pi or Intel nuc. Since these are behind your NAT router you can’t normally SSH into them. By using Mysocket.io you can make the SSH services on your home server available by tunneling TCP traffic through the tunnel seamlessly through NAT. Mysocket.io will provide a public DNS name and port number, which can be used to SSH into your server from anywhere.

A global stable public endpoint for your ephemeral resources.

Your containers come and go, perhaps even distributed over various public clouds as well as your private datacenter. It can be challenging to provide a stable public endpoint for these ephemeral and mobile services. With mysocket.io you can create a public endpoint, either an http/https, or TCP, TLS endpoint. Now each time a new container comes up, it can connect to the mysocket.io service and register as a new origin (backend) server. You can have one, or many of these origin services per public socket.

Interacting with the Mysocket.io service

The easiest way to get started with the service is by using the mysocketctl cli tool. More details about that can be found here.
All interaction with our services is done using our RESTful API. You can find the API and the API specifications at https://api.mysocket.io/ The mysocketctl tool uses this API to interact with the service.

FAQ

Note

The
contents are available on Github [https://github.com/mysocketio/docs/blob/master/about/faq.rst],
allowing you to send a pull request with edits or additions, or fork the
contents for usage elsewhere.

What is Mysocket?

Mysocket.io, a service that provides you with fast and secure network connectivity whenever you need it, wherever you are. It provides secure and stable public anycasted TCP endpoints for dynamic services or services that are otherwise not publicly reachable!

What can I do with Mysocket?

There are many examples, but in short you can extend reachability to TCP sockets that run within your network or just your laptop, to a global audiance.

What are identity aware sockets?

These are sockets that are aware of the visitor’s identity. If your socket is enabled for “cloud authentication,” all visitors will be prompted to authenticate first. Authentication can be completed using the various social Identity providers (Google, Github, Facebook), as well as local accounts. As the owner of the socket, you can then specify authorization rules, allowing only authenticated users with certain email domains or specific email addresses.
For more information see this article identity-aware sockets [https://www.mysocket.io/post/introducing-identity-aware-sockets-enabling-zero-trust-access-for-your-private-services]

what happened to the Python client?

We changed out the python3 mysocketctl client in favor of the new Golang mysocketctl client.
The python code is still available and can be installed using pip3 install mysocketctl
The python code can be found here:
https://github.com/mysocketio/mysocketctl

It’s recommended, however, to use the Go client, which can be downloaded here: https://download.edge.mysocket.io/

What performance improvement does Mysocket provide?

Because mysocket is an anycasted service, both the end-user and the tunnel connection is automatically terminated at the nearest mysocket server.
We also use TCP BBR, further improving the perfomance characteristics of the TCP connection

Where is Mysocket deployed today?

Mysocket.io is built on a global anycast network of 91 Points of Presence in 80 cities across 42 countries.
The actual tunnel and api servers are deployed throughout North America, Europe and Asia.

What kind of support is provided?

Today support is best effort.

Q: How do I get started with Mysocket?

The best way to get started is to follow the details in this blog: https://www.mysocket.io/post/introducing-mysocket
or see: https://mysocket.readthedocs.io/en/latest/about/about.html#quick-start

Q: What kind of transport security is used between the mysocket.io and the origin.

We currently support SSHv2 as the transport and tunneling protocol. It encrypts all traffic to eliminate eavesdropping, connection hijacking, and other attacks.

Q: If I only have one origin server, how do I benefit from the anycast features.

Using anycast your users will be routed to our closest proxy service (located in Asia, Europe and North America). From there on we make sure traffic is sent to the tunnel server. So we ingest your users traffic as close to the user as possible. This lower Round Trip time helps improve the user experience.

Introduction

mysocketctl is a cli tool that allows you to easily manage and and use the Mysocket services.
mysocketctl uses the api.mysocket.io REST api to configure the various objects needed to use the services.
Using mysocketctl, users can create and manage their account, as well as manage sockets and tunnels and easily connect to the service.

$ mysocketctl
mysocket.io command line interface (CLI)

Usage:
mysocketctl [command]

Available Commands:
account Create a new account or see account information.
connect Quickly connect, wrapper around sockets and tunnels
help Help about any command
login Login to mysocket and get a token
socket Manage your global sockets
tunnel Manage your tunnels
version check version

Flags:
-h, --help help for mysocketctl
-v, --version version for mysocketctl

Use "mysocketctl [command] --help" for more information about a command.

About this Documentation

The goal is for the documentation to be continuously updated and improved.

Note

You can contribute to this documentation by opening an issue
or sending patches via pull requests on the GitHub
source repository [https://github.com/mysocketio/docs/].

Installing Mysocketctl

Download the latest mysocketctl from https://download.edge.mysocket.io/

The mysocketctl client is written in Go. Binaries exist for all major Operating systems. For those interested. The source code for mysocketctl can be found here: https://github.com/mysocketio/mysocketctl-go

Making sure you run the latest version

To check if you’re up to date, run:

$ mysocketctl version check
You are up to date!
You're running version v1.0-9-g0efd9e3

To update to the latest version run:

$ mysocketctl version upgrade

This will download the latest version, validate the checksum, and replace the current binary with the latest version.
A version check is also performed each time the user runs mysocketctl login

Account management and login

$ mysocketctl account --help
Create a new account or see account information.

Usage:
mysocketctl account [command]

Available Commands:
create Create a new account
show Show account information

Flags:
-h, --help help for account

Use "mysocketctl account [command] --help" for more information about a command.

Creating an account

To use mysocket.io users will need to register and create an account. The easiest way to create an account is to use the portal: https://portal.mysocket.io/register

Alternatvly, you can also use mysocketctl to create an account. Make sure to use a valid email address as we’ll use it to send you an email to validate your account.

mysocketctl account create \
 --name "your_name" \
 --email "your_email_address" \
 --password "a_secure_password"

You should receive an email now with a confirmation link. Please click the link to validate your email account. After that, you can login

Logging in and get a token

In order to use the service, please login like below

$ mysocketctl login
Email: atoonk@example.com
Password:
Login successful

or, if you like you can provide the username and/or password directly.

mysocketctl login \
 --email "your_email_address" \
 --password "a_secure_password" \

Logged in! Token stored in /Users/johndoe/.mysocketio_token

The login process returns a jwt token that is stored in a .mysocketio_token file located in the users home directory. Going forward, mysocketctl will use this token to authenticate with the API. Currently, the token is valid for 300 minutes, ie. 5hrs.
The user will need to re-issue a login request when the token has expired.

Account information

To see information about your account, use the following command.

mysocketctl account show
┌──────────────┬──┐
│ Name │ Andree Toonk │
│ Email │ blabla@gmail.com │
│ User ID │ addce6c8-cb8d-4ce5-228e-a8fe097434b9 │
│ SSH Username │ addce6c8cb8d4ce5228ea8fe097434b9 │
│ SSH Key │ ssh-rsa <your public key....SNIP TOO lONG> │
└──────────────┴──┘

Quick connect options

The quick-connect function allows users to quickly, ie. in one command:

	Create a socket

	Create a tunnel

	Make a local service available by connecting the tunnel to mysocket.

This quick connect feature is useful for when you want to make a local service available quickly. Later on we’ll look at how to configure and manage all the individual components.
Every time the connect feature is used, a new socket and, corresponding DNS name is created. If you need more permanent names, please look at creating sockets and tunnels separately.

$ mysocketctl connect --help
Quickly connect, wrapper around sockets and tunnels

Usage:
mysocketctl connect [flags]

Flags:
-e, --allowed_email_addresses string Comma seperated list of allowed Email addresses when using cloudauth
-d, --allowed_email_domains string comma seperated list of allowed Email domain (i.e. 'example.com', when using cloudauth
-c, --cloudauth Enable oauth/oidc authentication
-h, --help help for connect
 --host string Target host: Control where inbound traffic goes. Default localhost (default "127.0.0.1")
-i, --identity_file string Identity File
-n, --name string Service name
 --password string Password, required when protected set to true
-p, --port int Port
 --protected Protected, default no
-t, --type string Socket type: http, https, tcp, tls (default "http")
-u, --username string Username, required when protected set to true

In the example bellow, we’ll connect our local port 8000 to the mysocket service.
Mysocket.io will automatically create a socket with a DNS name for you. It will also create a tunnel, which mysocketctl will use to connect to automatically.

mysocketctl connect \
 --port 8000 \
 --name "my test service"

┌──────────────────────────────────────┬────────────────────────────────────┬─────────┬──────┬────────────┬─────────────────┐
│ SOCKET ID │ DNS NAME │ PORT(S) │ TYPE │ CLOUD AUTH │ NAME │
├──────────────────────────────────────┼────────────────────────────────────┼─────────┼──────┼────────────┼─────────────────┤
│ db39a501-1010-4b5a-842d-bb6fe1fe4e2d │ twilight-sky-7409.edge.mysocket.io │ 80, 443 │ http │ false │ my test service │
└──────────────────────────────────────┴────────────────────────────────────┴─────────┴──────┴────────────┴─────────────────┘

Connecting to Server: ssh.mysocket.io

Welcome to Mysocket.io!
my test service - https://twilight-sky-7409.edge.mysocket.io

===
Logs
===

In this case, a socket with the name twilight-sky-7409.edge.mysocket.io was created. Using your browser, you can now visit this socket which is automatically connected to the http service running on your localhost port 8000.
Note, to test this, you can quickly start a localhost http server on port 8000 like this:

python3 -m http.server 8000

All requests are logged and shown in the mysocketctl terminal.

Ctrl-c will cause the ssh tunnel to disconnect.

^Ccleaning up...

Socket Management

Sockets are the public endpoint that mysocket creates on behalf of users. Each socket will come with a unique DNS name.
There are three types of socket supported today:

	http/https. Use this when your local service is a http service.

	TCP. Use this when your local service is a non-http service. In this case mysocket will proxy a raw tcp session. This is used for example for ssh or https services. Note that in this case mysocket will, in addition to a unique DNS name, also create a TCP port number just for your service.

	TLS. This is a TLS encrypted TCP socket. This is great to, for example, make your local mysql service available over TLS.

$ mysocketctl socket --help
Manage your global sockets

Usage:
mysocketctl socket [command]

Available Commands:
create Create a new socket
delete Delete a socket
ls List your sockets

Flags:
-h, --help help for socket

Use "mysocketctl socket [command] --help" for more information about a command.

Creating sockets

The command below creates an http socket of type http. It returns the socket_id and dns name.

mysocketctl socket create \
 --name "my local http service" \
 --type http
┌──────────────────────────────────────┬──┬─────────┬──────┬────────────┬───────────────────────┐
│ SOCKET ID │ DNS NAME │ PORT(S) │ TYPE │ CLOUD AUTH │ NAME │
├──────────────────────────────────────┼──┼─────────┼──────┼────────────┼───────────────────────┤
│ de306718-3315-4445-b9e6-e68fe5cf45d7 │ delicate-waterfall-6975.edge.mysocket.io │ 80, 443 │ http │ false │ my local http service │
└──────────────────────────────────────┴──┴─────────┴──────┴────────────┴───────────────────────┘

For http based services, we can add password protection to the socket. This means that the user will see a username password window before visiting your socket service.
There are two ways to achieve this:
1) Using the “cloud authentication” feature. This will allow the user to login with OpenIDConnect, which supports Google, Facebook, or Github. As well as local account and even SAML.
2) static username and password using Basic Auth.

Below an example of creating an identity aware socket using the Cloud Authentication feature.
With this, we created a socket on the mysocket.io infrastructure, enabled authentication, and provided a list of authorization rules that allow users that have authenticated as andree@example.io, john@doe.com or anyone with an @mycorp.com email address.
for more information about Identity aware socket also see this article [https://www.mysocket.io/post/introducing-identity-aware-sockets-enabling-zero-trust-access-for-your-private-services].

mysocketctl socket create \
 --name "My Identity aware socket" \
 --cloudauth \
 --allowed_email_domains "mycorp.com" \
 --allowed_email_addresses "andree@example.io,john@doe.com"
┌──────────────────────────────────────┬───────────────────────────────────────┬─────────┬──────┬────────────┬──────────────────────────┐
│ SOCKET ID │ DNS NAME │ PORT(S) │ TYPE │ CLOUD AUTH │ NAME │
├──────────────────────────────────────┼───────────────────────────────────────┼─────────┼──────┼────────────┼──────────────────────────┤
│ fab1357d-acfb-4735-ae4f-0dceb9fcb0ce │ wispy-snowflake-5908.edge.mysocket.io │ 80, 443 │ http │ true │ My Identity aware socket │
└──────────────────────────────────────┴───────────────────────────────────────┴─────────┴──────┴────────────┴──────────────────────────┘

Cloud Authentication, login details:
┌─────────────────────────┬───────────────────────┐
│ ALLOWED EMAIL ADDRESSES │ ALLOWED EMAIL DOMAINS │
├─────────────────────────┼───────────────────────┤
│ andree@example.io │ mycorp.com │
│ john@doe.com │ │
└─────────────────────────┴───────────────────────┘

Below an example of creating a password-protected socket, with username john and password secret.

mysocketctl socket create \
 --name "my local http service" \
 --type http \
 --protected \
 --username john \
 --password secret
┌──────────────────────────────────────┬─────────────────────────────────┬─────────┬──────┬────────────┬───────────────────────┐
│ SOCKET ID │ DNS NAME │ PORT(S) │ TYPE │ CLOUD AUTH │ NAME │
├──────────────────────────────────────┼─────────────────────────────────┼─────────┼──────┼────────────┼───────────────────────┤
│ 818f3cf8-1ed8-4fbc-af41-3fa6054d5b6b │ snowy-sea-4481.edge.mysocket.io │ 80, 443 │ http │ false │ my local http service │
└──────────────────────────────────────┴─────────────────────────────────┴─────────┴──────┴────────────┴───────────────────────┘

Protected Socket:
┌──────────┬──────────┐
│ USERNAME │ PASSWORD │
├──────────┼──────────┤
│ john │ secret │
└──────────┴──────────┘

Listing all sockets

To see all your socket, issue the socket ls command like below:

mysocketctl socket ls
┌──────────────────────────────────────┬──┬─────────┬───────┬────────────┬──────────────────────────┐
│ SOCKET ID │ DNS NAME │ PORT(S) │ TYPE │ CLOUD AUTH │ NAME │
├──────────────────────────────────────┼──┼─────────┼───────┼────────────┼──────────────────────────┤
│ cc1bfd68-cca7-49ce-b1d8-e4495a43796e │ dry-darkness-1814.edge.mysocket.io │ 80, 443 │ http │ false │ Local port 8000 │
│ c28bcd15-7e35-4090-b228-8d154841b699 │ green-silence-145.edge.mysocket.io │ 80, 443 │ http │ false │ Local port 8888 │
│ d60ca2a1-7215-4a7b-985d-c099ac6d1293 │ polished-mountain-1373.edge.mysocket.io │ 80, 443 │ http │ false │ Local port 8888 │
│ 932b9fab-6d01-4468-84bb-5a1e69170432 │ restless-voice-3146.edge.mysocket.io │ 80, 443 │ http │ false │ Local port 8888 │
│ 69fd1375-313b-4737-bcea-fda60e831f47 │ rough-bush-1794.edge.mysocket.io │ 80, 443 │ https │ false │ string │
│ 72415de0-65b2-4bb7-b477-96f6ce3603c2 │ ancient-dust-7286.edge.mysocket.io │ 54858 │ tls │ false │ ssh over tls test │
│ 60d5b3f6-a6fc-4b52-82bf-7538ee18d172 │ empty-snow-8262.edge.mysocket.io │ 80, 443 │ http │ false │ Local port 80 │
│ de306718-3315-4445-b9e6-e68fe5cf45d7 │ delicate-waterfall-6975.edge.mysocket.io │ 80, 443 │ http │ false │ my local http service │
│ 818f3cf8-1ed8-4fbc-af41-3fa6054d5b6b │ snowy-sea-4481.edge.mysocket.io │ 80, 443 │ http │ false │ my local http service │
│ fab1357d-acfb-4735-ae4f-0dceb9fcb0ce │ wispy-snowflake-5908.edge.mysocket.io │ 80, 443 │ http │ true │ My Identity aware socket │
└──────────────────────────────────────┴──┴─────────┴───────┴────────────┴──────────────────────────┘

Delete sockets

To delete a socket, issue the socket delete command and provide the socket_id you wish to delete.

mysocketctl socket delete \
 --socket_id 5870a362-65d3-474d-bbf6-3341827eaee0

Socket deleted

Tunnel Management

In the previous section, we looked at managing sockets. Sockets are created on the mysocket servers and serve as the public endpoint for your local services. In order to connect your local service to the mysocket socket we need tunnels.
In this section, we’ll explain how to manage tunnels and how to connect the tunnels. Tunnels provide the connection between your local service and the globally anycasted public sockets for you. Currently, we support ssh as a transport protocol for secure connectivity between your local services and mysocket.
Note that a socket can have multiple tunnels. In that case mysocket will load balance over all available tunnels.

mysocketctl tunnel --help
Manage your tunnels

Usage:
mysocketctl tunnel [command]

Available Commands:
connect Connect a tunnel
create Create a tunnel
delete Delete a tunnel
ls List your tunnels

Flags:
-h, --help help for tunnel

Use "mysocketctl tunnel [command] --help" for more information about a command.

Creating a tunnel

The command below creates a new tunnel for a socket we create earlier.

mysocketctl tunnel create \
 --socket_id 818f3cf8-1ed8-4fbc-af41-3fa6054d5b6b
┌──────────────────────────────────────┬──────────────────────────────────────┬───────────────┬────────────┐
│ SOCKET ID │ TUNNEL ID │ TUNNEL SERVER │ RELAY PORT │
├──────────────────────────────────────┼──────────────────────────────────────┼───────────────┼────────────┤
│ 818f3cf8-1ed8-4fbc-af41-3fa6054d5b6b │ 3fc93b24-c5b1-4c30-9427-ae6b5738224d │ │ 7295 │
└──────────────────────────────────────┴──────────────────────────────────────┴───────────────┴────────────┘

Note that the mysocket API returned a tunnel_id and a relay port. The relay port is used when connecting the tunnel, it’s used as the SSH listener port.

Listing all tunnels for a socket

To see all tunnels for a socket, issue the mysocketctl tunnel ls command like below:

mysocketctl tunnel ls \
 --socket_id 818f3cf8-1ed8-4fbc-af41-3fa6054d5b6b
┌──────────────────────────────────────┬──────────────────────────────────────┬───────────────┬────────────┐
│ SOCKET ID │ TUNNEL ID │ TUNNEL SERVER │ RELAY PORT │
├──────────────────────────────────────┼──────────────────────────────────────┼───────────────┼────────────┤
│ 818f3cf8-1ed8-4fbc-af41-3fa6054d5b6b │ 3fc93b24-c5b1-4c30-9427-ae6b5738224d │ │ 7295 │
│ 818f3cf8-1ed8-4fbc-af41-3fa6054d5b6b │ f0bc2e7f-e22d-4ac0-94ae-ccf5160c0a12 │ │ 7296 │
└──────────────────────────────────────┴──────────────────────────────────────┴───────────────┴────────────┘

The tunnel server field indicates what server the tunnel was last connected to.

Deleting a tunnel

To delete a tunnel, issue the tunnel delete command and provide the socket_id and tunnel_id you wish to delete.

mysocketctl tunnel delete \
 --socket_id 818f3cf8-1ed8-4fbc-af41-3fa6054d5b6b \
 --tunnel_id 3fc93b24-c5b1-4c30-9427-ae6b5738224d

Tunnel deleted

Connecting and using a tunnel

In order to spin up your tunnel, the mysocketctl tunnel connect feature may be used.

mysocketctl tunnel connect --help
Connect a tunnel

Usage:
mysocketctl tunnel connect [flags]

Flags:
-h, --help help for connect
 --host string Target host: Control where inbound traffic goes. Default localhost (default "127.0.0.1")
-i, --identity_file string Identity File
-p, --port int Port number
-s, --socket_id string Socket ID
-t, --tunnel_id string Tunnel ID

It requires socket_id and tunnel_id as mandatory arguments. It also needs to know what port number the local service listens on. This can be any local TCP port, as long as you have something listening on it.
For example, if you have a local webservice, you want to make publicly available using this tunnel in port 8000 then provide 8000 as the --port parameter.
If you wanted to make ssh available and the socket you created is of type TCP, then provide port 22 as the port parameter.

the --host parameter defaults to localhost (127.0.0.1). This can be changed, --host accepts a DNS name or an IP address. This is useful for when you’d like to forward the traffic to a different host than localhost.

the --i parameter allows you to specify a non-standard ssh identity file (private key)

mysocketctl tunnel connect \
 --socket_id 818f3cf8-1ed8-4fbc-af41-3fa6054d5b6b \
 --tunnel_id f0bc2e7f-e22d-4ac0-94ae-ccf5160c0a12 \
 --port 8000

Connecting to Server: ssh.mysocket.io

Welcome to Mysocket.io!
my local http service - https://snowy-sea-4481.edge.mysocket.io

===
Logs
===

The tunnel connect command sets up a secure encrypted ssh tunnel to ssh.mysocket.io. This is an anycasted ssh service, so users will always use the closest, lowest latency, mysocket ssh server. Once connected, the mysocket control plane will signal in real-time all other servers where this tunnel is. As a result, you can re-use the tunnel from multiple endpoints, but only the latest login will be used for traffic. If you would like to load balance over multiple tunnel sessions, simply create multiple tunnel connections first.

The stop the tunnel session, press ctr-c.

An example of using mysocketctl as a side-car / forwarder to, in this case, google.com:80 can be seen below. In this case, traffic to https://snowy-sea-4481.edge.mysocket.io is routed to the tunnel endpoint (the mysocketctl client), which will then forward it to google.com port 80. This can be useful for cases where the actual target can’t run mysocketctl like, for example, an appliance or managed database.

mysocketctl tunnel connect \
 --socket_id 818f3cf8-1ed8-4fbc-af41-3fa6054d5b6b \
 --tunnel_id f0bc2e7f-e22d-4ac0-94ae-ccf5160c0a12 \
 --port 80 \
 --host google.com

 Connecting to Server: ssh.mysocket.io

Welcome to Mysocket.io!
my local http service - https://snowy-sea-4481.edge.mysocket.io

===
Logs
===

Index

 F
 | I

F

 	
 	FAQ

 	
 	
 Frequently Asked Questions

 	
 see FAQ

I

 	
 	Introduction, [1]

 nav.xhtml

 Table of Contents

 		
 Welcome to MySocket’s documentation!

 		
 Introduction

 		
 About Mysocket

 		
 About this Documentation

 		
 Quick start

 		
 Features

 		
 Build on a global anycast network

 		
 Example use cases

 		
 Zero Trust

 		
 Kubernetes public load balancer

 		
 Easy Multi-region load balancing

 		
 Make the local web service on your laptop available to your colleagues or client.

 		
 Access your raspberry pi at home from anywhere on the Internet

 		
 A global stable public endpoint for your ephemeral resources.

 		
 Interacting with the Mysocket.io service

 		
 FAQ

 		
 What is Mysocket?

 		
 What can I do with Mysocket?

 		
 What are identity aware sockets?

 		
 what happened to the Python client?

 		
 What performance improvement does Mysocket provide?

 		
 Where is Mysocket deployed today?

 		
 What kind of support is provided?

 		
 Q: How do I get started with Mysocket?

 		
 Q: What kind of transport security is used between the mysocket.io and the origin.

 		
 Q: If I only have one origin server, how do I benefit from the anycast features.

 		
 Introduction

 		
 About this Documentation

 		
 Installing Mysocketctl

 		
 Making sure you run the latest version

 		
 Account management and login

 		
 Creating an account

 		
 Logging in and get a token

 		
 Account information

 		
 Quick connect options

 		
 Socket Management

 		
 Creating sockets

 		
 Listing all sockets

 		
 Delete sockets

 		
 Tunnel Management

 		
 Creating a tunnel

 		
 Listing all tunnels for a socket

 		
 Deleting a tunnel

 		
 Connecting and using a tunnel

_static/file.png

_static/minus.png

_static/plus.png

