
MySocket

Andree Toonk

Mar 11, 2021

ABOUT MYSOCKET

1 Introduction 3

2 Quick start 5

3 Features 7

4 Build on a global anycast network 9

5 Example use cases 11

6 Interacting with the Mysocket.io service 13

7 FAQ 15

8 Introduction 17

9 Installing Mysocketctl 19

10 Account management and login 21

11 Quick connect options 23

12 Socket Management 25

13 Tunnel Management 29

14 Index 33

Index 35

i

ii

MySocket

Welcome to the documentation for Mysocket.io, a service that provides you with fast and secure network connectivity
whenever you need it, wherever you are.

Mysocket provides load balancing and secures application traffic at the edge.

Note: This documentation is an open source project. We always appreciate your feedback and improvements.

You can submit an issue or pull request on the GitHub repository,

The main documentation is organized into the following sections:

ABOUT MYSOCKET 1

https://github.com/mysocketio/docs/

MySocket

2 ABOUT MYSOCKET

CHAPTER

ONE

INTRODUCTION

Welcome to the documentation for Mysocket.io, a service that provides you with fast and secure network connectivity
whenever you need it, wherever you are.

1.1 About Mysocket

Mysocket.io is a service that provides public endpoints for services that are otherwise not publicly reachable. A typical
example is a web service running on your laptop, which you’d like to make available to your client. Or ssh access to
servers behind NAT or a firewall, like a raspberry pi on your home network. Mysocket.io is a fully managed cloud
service, so nothing to run! Mysocket also provides OpenIDConnect and Saml authentication options, allowing for
zero trust deployments.

1.2 About this Documentation

The goal is for the documentation to be continuously updated and improved.

Note: You can contribute to the documentation by opening an issue or sending patches via pull requests on the GitHub
source repository.

3

https://github.com/mysocketio/docs/
https://github.com/mysocketio/docs/

MySocket

4 Chapter 1. Introduction

CHAPTER

TWO

QUICK START

More documentation can be found below; but if you’re eager to get started, consider this a quick start. Download the
mysocketctl client from our download page

Accounts can be created online, using the portal here: https://portal.mysocket.io/register, or using the cli Create an
account:

mysocketctl account create \
--name "your_name" \
--email "your_email_address" \
--password "a_secure_password"

After confirming your new account (check your email), login and retrieve an access token:

mysocketctl login \
--email "your_email_address" \
--password "a_secure_password"

or just mysocketctl login:

$ mysocketctl login
Email: atoonk@example.com
Password:
Login successful

Now you’re ready to use the “quick connect” feature to connect your local service listening on port 8000 to the Internet:

mysocketctl connect \
--port 8000 \
--name "my test service"

SOCKET ID DNS NAME PORT(S)
→˓ TYPE CLOUD AUTH NAME

6be8287f-cf55-4e29-a7c8-4960166ac609 green-voice-5562.edge.mysocket.io 80, 443
→˓ http false my test service

Connecting to Server: ssh.mysocket.io

Welcome to Mysocket.io!
my test service - https://green-voice-5562.edge.mysocket.io

===

(continues on next page)

5

http://download.edge.mysocket.io/
https://portal.mysocket.io/register

MySocket

(continued from previous page)

Logs
===
<live stream of your logs here>

To quickly test if it’s working, you can start a web service on localhost port 8000 like this.

python3 -m http.server 8000

Now visit the URL (dns_name) using your browser, and you’ll see that the localhost service you just started is now
globally available!

6 Chapter 2. Quick start

CHAPTER

THREE

FEATURES

Stable public DNS names and port numbers for your private apps.

Supports various socket types, including:

1. HTTP

2. HTTPS

3. TCP

4. TLS

Zero trust: Support for OpenIDConnect authentication. protect your sockets with authentication. Login with your
favorite idendity provider (Google, Facebook, Github)

Options for SSL/TLS Encryption for your sockets

All sockets run on a global anycast network, reducing latency and improving the user experience.

Username and Password protected (HTTP/HTTPS) Sockets

Live Stream of logs. We show you all requests in real-time, including the latency between our anycasted nodes and
your origin server.

Support for multiple origins per socket, ie. Load Balancing

7

MySocket

8 Chapter 3. Features

CHAPTER

FOUR

BUILD ON A GLOBAL ANYCAST NETWORK

Mysocket.io is built on a global anycasted network of 94 Points of Presence in 82 cities across 44 countries. This
helps you improve the availability and performance of the applications that you offer to your global users. Mysocket.io
application services connect to use anycast network using various servers in North America, Europe, and Asia. All
this provides us with the best possible low latency user experience and Instant regional failover, which results in an
incredible level of high availability.

9

MySocket

10 Chapter 4. Build on a global anycast network

CHAPTER

FIVE

EXAMPLE USE CASES

5.1 Zero Trust

With our Identity Aware sockets you can provide access to your private (on prem) services, without the need for a
VPN. Mysocket can act as a VPN alternative. No software is needed on the client, all the while authentication and
authorization options are making sure your private resources are only available to those who should have access.

5.2 Kubernetes public load balancer

Provide a load balancer service with a public anycasted IP for your Kubernetes workloads. As easy as installing the
mysocket.io k8 controller.

5.3 Easy Multi-region load balancing

Spin up your origin services over multiple cloud providers and regions and have the mysocket edge network front and
secure your traffic. Load balancing over multiple regions and cloud providers has never been easier.

5.4 Make the local web service on your laptop available to your col-
leagues or client.

You may prefer to do web development on your laptop, and, before publishing it to some public server, would like to
share it quickly with your teammate or client. Using Mysocket.io you can make the web app running on localhost,
publicly available to anyone on the Internet. Just share the mysocket.io generated URL with those with who you’d like
to share it. If you’d like, you can even make it password protected.

5.5 Access your raspberry pi at home from anywhere on the Internet

You have a small lab at home, perhaps with a raspberry pi or Intel nuc. Since these are behind your NAT router you
can’t normally SSH into them. By using Mysocket.io you can make the SSH services on your home server available
by tunneling TCP traffic through the tunnel seamlessly through NAT. Mysocket.io will provide a public DNS name
and port number, which can be used to SSH into your server from anywhere.

11

https://www.mysocket.io/post/introducing-identity-aware-sockets-enabling-zero-trust-access-for-your-private-services
https://www.mysocket.io/post/global-load-balancing-with-kubernetes-and-mysocket
https://www.mysocket.io/post/global-load-balancing-with-kubernetes-and-mysocket
https://www.mysocket.io/post/easy-multi-region-load-balancing-with-mysocket-as-a-load-balancer

MySocket

5.6 A global stable public endpoint for your ephemeral resources.

Your containers come and go, perhaps even distributed over various public clouds as well as your private datacenter.
It can be challenging to provide a stable public endpoint for these ephemeral and mobile services. With mysocket.io
you can create a public endpoint, either an http/https, or TCP, TLS endpoint. Now each time a new container comes
up, it can connect to the mysocket.io service and register as a new origin (backend) server. You can have one, or many
of these origin services per public socket.

12 Chapter 5. Example use cases

CHAPTER

SIX

INTERACTING WITH THE MYSOCKET.IO SERVICE

The easiest way to get started with the service is by using the mysocketctl cli tool. More details about that can be found
here. All interaction with our services is done using our RESTful API. You can find the API and the API specifications
at https://api.mysocket.io/ The mysocketctl tool uses this API to interact with the service.

13

https://api.mysocket.io/

MySocket

14 Chapter 6. Interacting with the Mysocket.io service

CHAPTER

SEVEN

FAQ

Note: The contents are available on Github, allowing you to send a pull request with edits or additions, or fork the
contents for usage elsewhere.

7.1 What is Mysocket?

Mysocket.io, a service that provides you with fast and secure network connectivity whenever you need it, wherever you
are. It provides secure and stable public anycasted TCP endpoints for dynamic services or services that are otherwise
not publicly reachable!

7.2 What can I do with Mysocket?

There are many examples, but in short you can extend reachability to TCP sockets that run within your network or just
your laptop, to a global audiance.

7.3 What are identity aware sockets?

These are sockets that are aware of the visitor’s identity. If your socket is enabled for “cloud authentication,” all
visitors will be prompted to authenticate first. Authentication can be completed using the various social Identity
providers (Google, Github, Facebook), as well as local accounts. As the owner of the socket, you can then specify
authorization rules, allowing only authenticated users with certain email domains or specific email addresses. For
more information see this article identity-aware sockets

7.4 what happened to the Python client?

We changed out the python3 mysocketctl client in favor of the new Golang mysocketctl client. The python code
is still available and can be installed using pip3 install mysocketctl The python code can be found here:
https://github.com/mysocketio/mysocketctl

It’s recommended, however, to use the Go client, which can be downloaded here: https://download.edge.mysocket.io/

15

https://github.com/mysocketio/docs/blob/master/about/faq.rst
https://www.mysocket.io/post/introducing-identity-aware-sockets-enabling-zero-trust-access-for-your-private-services
https://github.com/mysocketio/mysocketctl
https://download.edge.mysocket.io/

MySocket

7.5 What performance improvement does Mysocket provide?

Because mysocket is an anycasted service, both the end-user and the tunnel connection is automatically terminated
at the nearest mysocket server. We also use TCP BBR, further improving the perfomance characteristics of the TCP
connection

7.6 Where is Mysocket deployed today?

Mysocket.io is built on a global anycast network of 91 Points of Presence in 80 cities across 42 countries. The actual
tunnel and api servers are deployed throughout North America, Europe and Asia.

7.7 What kind of support is provided?

Today support is best effort.

7.8 Q: How do I get started with Mysocket?

The best way to get started is to follow the details in this blog: https://www.mysocket.io/post/introducing-mysocket
or see: https://mysocket.readthedocs.io/en/latest/about/about.html#quick-start

7.9 Q: What kind of transport security is used between the
mysocket.io and the origin.

We currently support SSHv2 as the transport and tunneling protocol. It encrypts all traffic to eliminate eavesdropping,
connection hijacking, and other attacks.

7.10 Q: If I only have one origin server, how do I benefit from the
anycast features.

Using anycast your users will be routed to our closest proxy service (located in Asia, Europe and North America).
From there on we make sure traffic is sent to the tunnel server. So we ingest your users traffic as close to the user as
possible. This lower Round Trip time helps improve the user experience.

16 Chapter 7. FAQ

https://www.mysocket.io/post/introducing-mysocket
https://mysocket.readthedocs.io/en/latest/about/about.html#quick-start

CHAPTER

EIGHT

INTRODUCTION

mysocketctl is a cli tool that allows you to easily manage and and use the Mysocket services. mysocketctl
uses the api.mysocket.io REST api to configure the various objects needed to use the services. Using mysocketctl,
users can create and manage their account, as well as manage sockets and tunnels and easily connect to the service.

$ mysocketctl
mysocket.io command line interface (CLI)

Usage:
mysocketctl [command]

Available Commands:
account Create a new account or see account information.
connect Quickly connect, wrapper around sockets and tunnels
help Help about any command
login Login to mysocket and get a token
socket Manage your global sockets
tunnel Manage your tunnels
version check version

Flags:
-h, --help help for mysocketctl
-v, --version version for mysocketctl

Use "mysocketctl [command] --help" for more information about a command.

8.1 About this Documentation

The goal is for the documentation to be continuously updated and improved.

Note: You can contribute to this documentation by opening an issue or sending patches via pull requests on the
GitHub source repository.

17

api.mysocket.io
https://github.com/mysocketio/docs/

MySocket

18 Chapter 8. Introduction

CHAPTER

NINE

INSTALLING MYSOCKETCTL

Download the latest mysocketctl from https://download.edge.mysocket.io/

The mysocketctl client is written in Go. Binaries exist for all major Operating systems. For those interested. The
source code for mysocketctl can be found here: https://github.com/mysocketio/mysocketctl-go

9.1 Making sure you run the latest version

To check if you’re up to date, run:

$ mysocketctl version check
You are up to date!
You're running version v1.0-9-g0efd9e3

To update to the latest version run:

$ mysocketctl version upgrade

This will download the latest version, validate the checksum, and replace the current binary with the latest version. A
version check is also performed each time the user runs mysocketctl login

19

https://download.edge.mysocket.io/
https://github.com/mysocketio/mysocketctl-go

MySocket

20 Chapter 9. Installing Mysocketctl

CHAPTER

TEN

ACCOUNT MANAGEMENT AND LOGIN

$ mysocketctl account --help
Create a new account or see account information.

Usage:
mysocketctl account [command]

Available Commands:
create Create a new account
show Show account information

Flags:
-h, --help help for account

Use "mysocketctl account [command] --help" for more information about a command.

10.1 Creating an account

To use mysocket.io users will need to register and create an account. The easiest way to create an account is to use the
portal: https://portal.mysocket.io/register

Alternatvly, you can also use mysocketctl to create an account. Make sure to use a valid email address as we’ll use it
to send you an email to validate your account.

mysocketctl account create \
--name "your_name" \
--email "your_email_address" \
--password "a_secure_password"

You should receive an email now with a confirmation link. Please click the link to validate your email account. After
that, you can login

21

https://portal.mysocket.io/register

MySocket

10.2 Logging in and get a token

In order to use the service, please login like below

$ mysocketctl login
Email: atoonk@example.com
Password:
Login successful

or, if you like you can provide the username and/or password directly.

mysocketctl login \
--email "your_email_address" \
--password "a_secure_password" \

Logged in! Token stored in /Users/johndoe/.mysocketio_token

The login process returns a jwt token that is stored in a .mysocketio_token file located in the users home
directory. Going forward, mysocketctl will use this token to authenticate with the API. Currently, the token is
valid for 300 minutes, ie. 5hrs. The user will need to re-issue a login request when the token has expired.

10.3 Account information

To see information about your account, use the following command.

mysocketctl account show

Name Andree Toonk
→˓

Email blabla@gmail.com
→˓

User ID addce6c8-cb8d-4ce5-228e-a8fe097434b9
→˓

SSH Username addce6c8cb8d4ce5228ea8fe097434b9
→˓

SSH Key ssh-rsa <your public key....SNIP TOO lONG>
→˓

22 Chapter 10. Account management and login

CHAPTER

ELEVEN

QUICK CONNECT OPTIONS

The quick-connect function allows users to quickly, ie. in one command:

1. Create a socket

2. Create a tunnel

3. Make a local service available by connecting the tunnel to mysocket.

This quick connect feature is useful for when you want to make a local service available quickly. Later on we’ll look
at how to configure and manage all the individual components. Every time the connect feature is used, a new socket
and, corresponding DNS name is created. If you need more permanent names, please look at creating sockets and
tunnels separately.

$ mysocketctl connect --help
Quickly connect, wrapper around sockets and tunnels

Usage:
mysocketctl connect [flags]

Flags:
-e, --allowed_email_addresses string Comma seperated list of allowed Email
→˓addresses when using cloudauth
-d, --allowed_email_domains string comma seperated list of allowed Email domain
→˓(i.e. 'example.com', when using cloudauth
-c, --cloudauth Enable oauth/oidc authentication
-h, --help help for connect

--host string Target host: Control where inbound traffic
→˓goes. Default localhost (default "127.0.0.1")
-i, --identity_file string Identity File
-n, --name string Service name

--password string Password, required when protected set to true
-p, --port int Port

--protected Protected, default no
-t, --type string Socket type: http, https, tcp, tls (default
→˓"http")
-u, --username string Username, required when protected set to true

In the example bellow, we’ll connect our local port 8000 to the mysocket service. Mysocket.io will automatically
create a socket with a DNS name for you. It will also create a tunnel, which mysocketctl will use to connect to
automatically.

mysocketctl connect \
--port 8000 \
--name "my test service"

(continues on next page)

23

MySocket

(continued from previous page)

SOCKET ID DNS NAME PORT(S)
→˓ TYPE CLOUD AUTH NAME

db39a501-1010-4b5a-842d-bb6fe1fe4e2d twilight-sky-7409.edge.mysocket.io 80, 443
→˓ http false my test service

Connecting to Server: ssh.mysocket.io

Welcome to Mysocket.io!
my test service - https://twilight-sky-7409.edge.mysocket.io

===
Logs
===

In this case, a socket with the name twilight-sky-7409.edge.mysocket.io was created. Using your browser, you can
now visit this socket which is automatically connected to the http service running on your localhost port 8000. Note,
to test this, you can quickly start a localhost http server on port 8000 like this:

python3 -m http.server 8000

All requests are logged and shown in the mysocketctl terminal.

Ctrl-c will cause the ssh tunnel to disconnect.

^Ccleaning up...

24 Chapter 11. Quick connect options

CHAPTER

TWELVE

SOCKET MANAGEMENT

Sockets are the public endpoint that mysocket creates on behalf of users. Each socket will come with a unique DNS
name. There are three types of socket supported today:

1. http/https. Use this when your local service is a http service.

2. TCP. Use this when your local service is a non-http service. In this case mysocket will proxy a raw tcp session.
This is used for example for ssh or https services. Note that in this case mysocket will, in addition to a unique
DNS name, also create a TCP port number just for your service.

3. TLS. This is a TLS encrypted TCP socket. This is great to, for example, make your local mysql service available
over TLS.

$ mysocketctl socket --help
Manage your global sockets

Usage:
mysocketctl socket [command]

Available Commands:
create Create a new socket
delete Delete a socket
ls List your sockets

Flags:
-h, --help help for socket

Use "mysocketctl socket [command] --help" for more information about a command.

12.1 Creating sockets

The command below creates an http socket of type http. It returns the socket_id and dns name.

mysocketctl socket create \
--name "my local http service" \
--type http

SOCKET ID DNS NAME
→˓PORT(S) TYPE CLOUD AUTH NAME

de306718-3315-4445-b9e6-e68fe5cf45d7 delicate-waterfall-6975.edge.mysocket.io
→˓80, 443 http false my local http service

25

MySocket

For http based services, we can add password protection to the socket. This means that the user will see a username
password window before visiting your socket service. There are two ways to achieve this: 1) Using the “cloud
authentication” feature. This will allow the user to login with OpenIDConnect, which supports Google, Facebook, or
Github. As well as local account and even SAML. 2) static username and password using Basic Auth.

Below an example of creating an identity aware socket using the Cloud Authentication feature. With this, we created
a socket on the mysocket.io infrastructure, enabled authentication, and provided a list of authorization rules that allow
users that have authenticated as andree@example.io, john@doe.com or anyone with an @mycorp.com email address.
for more information about Identity aware socket also see this article.

mysocketctl socket create \
--name "My Identity aware socket" \
--cloudauth \
--allowed_email_domains "mycorp.com" \
--allowed_email_addresses "andree@example.io,john@doe.com"

SOCKET ID DNS NAME
→˓PORT(S) TYPE CLOUD AUTH NAME

fab1357d-acfb-4735-ae4f-0dceb9fcb0ce wispy-snowflake-5908.edge.mysocket.io 80,
→˓443 http true My Identity aware socket

Cloud Authentication, login details:

ALLOWED EMAIL ADDRESSES ALLOWED EMAIL DOMAINS

andree@example.io mycorp.com
john@doe.com

Below an example of creating a password-protected socket, with username john and password secret.

mysocketctl socket create \
--name "my local http service" \
--type http \
--protected \
--username john \
--password secret

SOCKET ID DNS NAME PORT(S)
→˓TYPE CLOUD AUTH NAME

818f3cf8-1ed8-4fbc-af41-3fa6054d5b6b snowy-sea-4481.edge.mysocket.io 80, 443
→˓http false my local http service

Protected Socket:

USERNAME PASSWORD

john secret

26 Chapter 12. Socket Management

mailto:andree@example.io
mailto:john@doe.com
https://www.mysocket.io/post/introducing-identity-aware-sockets-enabling-zero-trust-access-for-your-private-services

MySocket

12.2 Listing all sockets

To see all your socket, issue the socket ls command like below:

mysocketctl socket ls

SOCKET ID DNS NAME
→˓PORT(S) TYPE CLOUD AUTH NAME

cc1bfd68-cca7-49ce-b1d8-e4495a43796e dry-darkness-1814.edge.mysocket.io
→˓80, 443 http false Local port 8000
c28bcd15-7e35-4090-b228-8d154841b699 green-silence-145.edge.mysocket.io

→˓80, 443 http false Local port 8888
d60ca2a1-7215-4a7b-985d-c099ac6d1293 polished-mountain-1373.edge.mysocket.io

→˓80, 443 http false Local port 8888
932b9fab-6d01-4468-84bb-5a1e69170432 restless-voice-3146.edge.mysocket.io

→˓80, 443 http false Local port 8888
69fd1375-313b-4737-bcea-fda60e831f47 rough-bush-1794.edge.mysocket.io

→˓80, 443 https false string
72415de0-65b2-4bb7-b477-96f6ce3603c2 ancient-dust-7286.edge.mysocket.io

→˓54858 tls false ssh over tls test
60d5b3f6-a6fc-4b52-82bf-7538ee18d172 empty-snow-8262.edge.mysocket.io

→˓80, 443 http false Local port 80
de306718-3315-4445-b9e6-e68fe5cf45d7 delicate-waterfall-6975.edge.mysocket.io

→˓80, 443 http false my local http service
818f3cf8-1ed8-4fbc-af41-3fa6054d5b6b snowy-sea-4481.edge.mysocket.io

→˓80, 443 http false my local http service
fab1357d-acfb-4735-ae4f-0dceb9fcb0ce wispy-snowflake-5908.edge.mysocket.io

→˓80, 443 http true My Identity aware socket

12.3 Delete sockets

To delete a socket, issue the socket delete command and provide the socket_id you wish to delete.

mysocketctl socket delete \
--socket_id 5870a362-65d3-474d-bbf6-3341827eaee0

Socket deleted

12.2. Listing all sockets 27

MySocket

28 Chapter 12. Socket Management

CHAPTER

THIRTEEN

TUNNEL MANAGEMENT

In the previous section, we looked at managing sockets. Sockets are created on the mysocket servers and serve as
the public endpoint for your local services. In order to connect your local service to the mysocket socket we need
tunnels. In this section, we’ll explain how to manage tunnels and how to connect the tunnels. Tunnels provide the
connection between your local service and the globally anycasted public sockets for you. Currently, we support ssh
as a transport protocol for secure connectivity between your local services and mysocket. Note that a socket can have
multiple tunnels. In that case mysocket will load balance over all available tunnels.

mysocketctl tunnel --help
Manage your tunnels

Usage:
mysocketctl tunnel [command]

Available Commands:
connect Connect a tunnel
create Create a tunnel
delete Delete a tunnel
ls List your tunnels

Flags:
-h, --help help for tunnel

Use "mysocketctl tunnel [command] --help" for more information about a command.

13.1 Creating a tunnel

The command below creates a new tunnel for a socket we create earlier.

mysocketctl tunnel create \
--socket_id 818f3cf8-1ed8-4fbc-af41-3fa6054d5b6b

SOCKET ID TUNNEL ID
→˓TUNNEL SERVER RELAY PORT

818f3cf8-1ed8-4fbc-af41-3fa6054d5b6b 3fc93b24-c5b1-4c30-9427-ae6b5738224d
→˓ 7295

Note that the mysocket API returned a tunnel_id and a relay port. The relay port is used when connecting the tunnel,
it’s used as the SSH listener port.

29

MySocket

13.2 Listing all tunnels for a socket

To see all tunnels for a socket, issue the mysocketctl tunnel ls command like below:

mysocketctl tunnel ls \
--socket_id 818f3cf8-1ed8-4fbc-af41-3fa6054d5b6b

SOCKET ID TUNNEL ID
→˓TUNNEL SERVER RELAY PORT

818f3cf8-1ed8-4fbc-af41-3fa6054d5b6b 3fc93b24-c5b1-4c30-9427-ae6b5738224d
→˓ 7295
818f3cf8-1ed8-4fbc-af41-3fa6054d5b6b f0bc2e7f-e22d-4ac0-94ae-ccf5160c0a12

→˓ 7296

The tunnel server field indicates what server the tunnel was last connected to.

13.3 Deleting a tunnel

To delete a tunnel, issue the tunnel delete command and provide the socket_id and tunnel_id you wish to delete.

mysocketctl tunnel delete \
--socket_id 818f3cf8-1ed8-4fbc-af41-3fa6054d5b6b \
--tunnel_id 3fc93b24-c5b1-4c30-9427-ae6b5738224d

Tunnel deleted

13.4 Connecting and using a tunnel

In order to spin up your tunnel, the mysocketctl tunnel connect feature may be used.

mysocketctl tunnel connect --help
Connect a tunnel

Usage:
mysocketctl tunnel connect [flags]

Flags:
-h, --help help for connect

--host string Target host: Control where inbound traffic goes. Default
→˓localhost (default "127.0.0.1")
-i, --identity_file string Identity File
-p, --port int Port number
-s, --socket_id string Socket ID
-t, --tunnel_id string Tunnel ID

It requires socket_id and tunnel_id as mandatory arguments. It also needs to know what port number the local service
listens on. This can be any local TCP port, as long as you have something listening on it. For example, if you have a
local webservice, you want to make publicly available using this tunnel in port 8000 then provide 8000 as the --port
parameter. If you wanted to make ssh available and the socket you created is of type TCP, then provide port 22 as the
port parameter.

30 Chapter 13. Tunnel Management

MySocket

the --host parameter defaults to localhost (127.0.0.1). This can be changed, --host accepts a DNS name or an IP
address. This is useful for when you’d like to forward the traffic to a different host than localhost.

the --i parameter allows you to specify a non-standard ssh identity file (private key)

mysocketctl tunnel connect \
--socket_id 818f3cf8-1ed8-4fbc-af41-3fa6054d5b6b \
--tunnel_id f0bc2e7f-e22d-4ac0-94ae-ccf5160c0a12 \
--port 8000

Connecting to Server: ssh.mysocket.io

Welcome to Mysocket.io!
my local http service - https://snowy-sea-4481.edge.mysocket.io

===
Logs
===

The tunnel connect command sets up a secure encrypted ssh tunnel to ssh.mysocket.io. This is an anycasted ssh
service, so users will always use the closest, lowest latency, mysocket ssh server. Once connected, the mysocket
control plane will signal in real-time all other servers where this tunnel is. As a result, you can re-use the tunnel from
multiple endpoints, but only the latest login will be used for traffic. If you would like to load balance over multiple
tunnel sessions, simply create multiple tunnel connections first.

The stop the tunnel session, press ctr-c.

An example of using mysocketctl as a side-car / forwarder to, in this case, google.com:80 can be seen below. In
this case, traffic to https://snowy-sea-4481.edge.mysocket.io is routed to the tunnel endpoint (the mysocketctl client),
which will then forward it to google.com port 80. This can be useful for cases where the actual target can’t run
mysocketctl like, for example, an appliance or managed database.

mysocketctl tunnel connect \
--socket_id 818f3cf8-1ed8-4fbc-af41-3fa6054d5b6b \
--tunnel_id f0bc2e7f-e22d-4ac0-94ae-ccf5160c0a12 \
--port 80 \
--host google.com

Connecting to Server: ssh.mysocket.io

Welcome to Mysocket.io!
my local http service - https://snowy-sea-4481.edge.mysocket.io

===
Logs
===

13.4. Connecting and using a tunnel 31

MySocket

32 Chapter 13. Tunnel Management

CHAPTER

FOURTEEN

INDEX

• genindex

33

MySocket

34 Chapter 14. Index

INDEX

F
FAQ, 13
Frequently Asked Questions, see FAQ

I
Introduction, 1, 16

35

	Introduction
	Quick start
	Features
	Build on a global anycast network
	Example use cases
	Interacting with the Mysocket.io service
	FAQ
	Introduction
	Installing Mysocketctl
	Account management and login
	Quick connect options
	Socket Management
	Tunnel Management
	Index
	Index

